
BE UNSTOPPABLE

MariaDB Xpand Under the Hood: 
From Architecture to Reality

Anders Karlsson, Principal Sales Engineer, MariaDB
Aman Singh, Customer Engineer, MariaDB

[Proprietary to MariaDB]

Agenda

● Why Distributed SQL makes so much sense

● What is MariaDB Xpand

● A slice of Xpand – A unique MariaDB Xpand feature

○ MariaDB Xpand High Availability

○ MariaDB Xpand Elasticity

○ MariaDB Xpand Resource usage and cost

● The Xpand Storage Hierarchy

● The Xpand Rebalancer

● Conclusions

Why Distributed SQL Makes
Sense

In the beginning, there was the database

● One server running the database was what we had

● For cost reason, for management reasons and for licensing reasons

● For high performance requirements, we needed more CPU power and RAM

● Shared everything databases became the norm for HA and performance

But servers grew, as did the load on them

● But shared everything was expensive, complicated and disk performance a bottleneck

● With much more reads than writes, read scale-out became the next big thing

● Read scale-out was easy and inexpensive, but writes didn't scale

● Sharding became the solution and suddenly everyone was interested, but…

But sharding didn't cut it either

● Sharding meant that data was distributed, but distribution is static

● When new data was added, data had to be redistributed

● When data or processing became unbalanced, data has to be redistributed

● How do you scale writes when to data to be written isn't evenly distributed

● And applications need to sharding aware

● And by the way, how do we deal with High Availability

Distributed SQL solves the puzzle

Node #1

Replication

All data on all nodes

Node #2 Node #3 Node #1

Sharding

Static data distribution

Node #2 Node #3 Node #1

Distributed SQL

Data distribution

Node #2 Node #3

● Data is distributed dynamically in the cluster across nodes

● Processing is distributed across the cluster

● All nodes are created equal

● Data is distributed without the need for shard keys

What is MariaDB Xpand?

MariaDB Xpand – Quick facts

● MariaDB Xpand is the Distributed SQL 
solution from MariaDB

● MariaDB Xpand is, from the application point 
of view, a SQL based RDBMS

● MariaDB Xpand is SQL and protocol 
compatible with MariaDB

● MariaDB Xpand is typically load balanced by 
MariaDB MaxScale

MariaDB Xpand – Quick facts

● MariaDB Xpand is set up in a cluster with typically 3 nodes or more

● All nodes are created equal and can take any load

● High Availability is built in from the ground and up

● Key features are scalability, availability, elasticity and cost effectiveness

● MariaDB Xpand combines ultra fast performance with analytics capabilities using

Columnar Indexes

● MariaDB Xpand is available in MariaDB SkySQL DBaaS as well as on-prem

A Slice of Xpand

MariaDB Xpand - Slices

● Tables and Indexes in MariaDB Xpand 
are divided into Slices

● A table / index is distributed by 
distributing the slices

● There are multiple copies of each 
slice in different nodes

● The slices are synchronously 
replicated

● One copy is considered a ranked replica and this is the primary used one

MariaDB Xpand – High Availability

● If a node fails, there are always copies of slices in the surviving nodes

● When this happens, first non-ranked replicas are promoted to ranked replicas

● Secondly, new non-ranked replicas are created in the surviving nodes

● With No down-time!

MariaDB Xpand – Elasticity

● Nodes can be added to an existing cluster

● Slices will be automatically re-distributed to the new nodes

● With No downtime!

MariaDB Xpand – Balancing

● Slices are balanced for best processing and workload distribution

● Balancing is largely done without moving or copying data

● Due to this workloads move in a running system and with minimal overhead

● With No downtime!

MariaDB Xpand – Resource usage and cost

● Data and processing is balanced with no movement of data

● Hardware can be utilized optimally

● Even with a varying workload and when the system is live

● Allowing for use of lower cost servers

● With No Downtime!

5 Node Cluster

Nodes: 8xlarge

$91.524 / year

5 Node Cluster

Nodes: 4xlarge

$54.528 / year

Xpand Storage Heirarchy

19

Distribution terminology

Distribution
Key

Each table and index has a distribution key. Xpand hashes the  
distribution key to determine which slice owns the row or index entry.

The Primary Key functions as the distribution key for each table, and  
the indexed columns function as the distribution key for each index.

Slices Each table and index are distributed independently among the nodes,  
in chunks called slices.

Replicas
Xpand maintains multiple copies of each slice for fault tolerance. The copies are
called replicas. When a slice does not have a sufficient number of replicas for fault
tolerance, the Xpand Rebalancer automatically creates new replicas of that slice.

Xpand Storage Hierarchy

20

Index C
Representation

Primary  
Representation

Table (Relation)

Index representation(s) contain

key column(s) and primary key

Primary representation 
contains all row data

Index B
Representation

Index A
Representation

21

Xpand Distribution key

MariaDB Xpand uses a hash to
determine where a given row of data  
or a table’s index (representation)
should reside in the cluster

The columns selected for hashing are  
referred to as the distribution key  
for that representation.

By default, the distribution key uses the  
first column of an index, regardless of how  
many columns comprise the index. This is true  
for all indices including the primary key.

MariaDB Xpand uses independent
index distribution rather than a single-
key for tables and indexes

● This allows for a much broader range of
distributed query plans that scale with cluster
node count

● This requires strict support within the system
to guarantee that indexes stay consistent
with each other and the main table

22

Slice 1 Slice 2 Slice 3

Replica 2 Replica 2 Replica 2

Rows of
representation
hashed by key
into slices
(typically <8GB)

Each slice  
has two  
or more
synchronous
replicas

Index C
Representation

Primary  
Representation

Table (Relation)

Index B
Representation

Index A
Representation

Replica 1 Replica 1 Replica 1

Xpand Storage Hierarchy

Distribution of Slices and Replicas

Each node has slices of each representation

● This distributes load across all nodes

Every slice has at least two replicas  
(by default)

● On different nodes

● On different Zones (If zone configured)

● This enables fault tolerance

Result

● All nodes (zones) have an equal amount of data

● No slice is lost when 1 node (zone) fails

sli1 rep1

sli3 rep2

sli1 rep2

sli2 rep1 sli2 rep2

sli3 rep1

Node 1 Node 2 Node 3

The Xpand Rebalancer

The Perfect Distribution

25

The Rebalancer is the key to maintaining the perfect distribution

Perfect distribution at the start is easy

But what happens when…

1

2

3

4

Split the slices

Move replicas to new node

Copy to make new replicas

Rerank replicas

The table grows much larger?

A node is added?

We lose a node or disk?

Read imbalance?

Splitting slices to accommodate growth

sli4 rep1

sli2 rep1 sli3 rep1

sli2 rep2

sli5 rep1

sli1 rep1

sli4 rep2

sli1 rep2

sli5 rep2

sli3 rep2

When slice grows past 8GB limit

Split slice into two new slices

Dispose of old slices

Populate two replicas of each new slice

Node 1 Node 2 Node 3

1

2

3

Slice Size
The default max slice size is 8GB

You may want to have larger slice sizes if you  
have tables greater than 100GB

● To reduce database’s overhead of slice management

● For example 1000 slices in a single table is probably to many

A  
100GB  
table  
would  
have

1GB slices = 100 slices (old default)

2GB slices = 50 slices (common)

8GB slices = 13 slices (new default)

16GB slices = 7 slices (extreme cases)

More relevant with larger tables,
but no impact to smaller tables

Because slice size is controlling the max size,
not the min size

Global variable
rebalancer_split_threshold_kb

This is a cluster-wide setting (not per-table)

Reprotect by Re-creating missing replicas

In the event of node failure,  
surviving replicas are used  
to reprotect thus restoring  
full fault tolerance

sli2 rep1 sli3 rep1

sli2 rep2

sli1 rep1

sli1 rep2

sli3 rep3

sli3 rep2

Node 1 Node 2 Node 3

sli2 rep3

Fail

Rebalance after adding a node

A new node is added to the cluster

And replicas are moved (a.k.a.
rebalanced) to evenly distribute data

sli2 rep1 sli3 rep3sli1 rep1

sli1 rep2

sli3 rep3

sli3 rep2

Node 1 Node 2 Node 3

sli2 rep3 sli1 rep1

Rerank to Distribute Read Load

Xpand always reads from  
the lowest-rank replica

This maximizes cache efficiency

Rerank evens out read  
imbalance by changing read  
preference to other replica

sli2 rep1

sli1 rep2

sli3 rep3

sli3 rep2

Node 1 Node 2 Node 3

sli2 rep3 sli1 rep3

Node 2 is

under-read

 Increase rank

Conclusion

MariaDB Xpand – Conclusion

● Distributed SQL means data and processing is distributed and scalable

● MariaDB Xpand is a Distributed SQL solution with all nodes in the cluster

created equal to process any data item

● MariaDB Xpand allows data to be distributed without it being physically

moved or copied

● MariaDB Xpand provides built-in high availability

● MariaDB Xpand is truly elastic, allowing nodes to be added as needed to a

running cluster

● MariaDB Xpand combines scalability benefits of a Distributed SQL database

solution with Analytical indexes

THANK YOU

BE UNSTOPPABLE

